Conecta con nosotros
magnetar magnetar

Ciencia

Detectan el posible y raro nacimiento de un magnetar en una colisión colosal

Publicado

el

Por

La fusión más brillante detectada hasta ahora de dos estrellas de neutrones no solo es un fenómeno poco frecuente, sino que su resultado intriga a los científicos, pues en lugar de resolverse con un agujero negro, habría dado lugar a un raro magnetar.

Varios telescopios, entre ellos el espacial Hubble, detectaron este año un estallido de rayos gamma diez veces más brillante de lo previsto, el cual podía indicar el nacimiento de un magnetar, resultado la fusión de dos estrellas de neutrones, algo de lo nunca hasta ahora se había tenido evidencias.

Esta es la teoría formulada por un equipo de astrofísicos dirigido por la Universidad de Northwstern, tras analizar con longitudes de onda ópticas, de rayos X, infrarrojas cercanas y de radio el brillante estallido.

La fusión de las dos estrellas de neutrones dio como resultado la kilonova más brillante vista hasta el momento, cuya luz llego a la Tierra el pasado mayo como una ráfaga de rayos gamma.

Este tipo de fusiones son muy raras, pero extremadamente importantes porque los científicos piensan que son una de las principales fuentes de elementos pesados en el universo, como el oro y el uranio.

“Cuando dos estrellas de neutrones se fusionan, el resultado predicho más común es que formen una pesada estrella de neutrones que colapsa en un agujero negro en milisegundos o menos”, explicó la directora del estudio Wen-fai Fong.

Pero para este estallido en particular, “es posible” que el objeto pesado haya sobrevivido y que se convirtiera en un magnetar, es decir, una estrella de neutrones que gira rápidamente y que tiene grandes campos magnéticos, que vierte energía en su entorno.

El fenómeno fue observado por varios telescopios, pero los datos llegados del Hubble hizo ver a los astrónomos que aquella no había sido un estallido corto normal de rayos gamma.

Fong y su equipo discutieron varias posibilidades para explicar el inusual brillo detectado por el Hubble y una de ellas es el surgimiento de un magnetar.

“Sabemos -dijo la experta- que los magnetar existen porque los vemos en nuestra galaxia” y se cree que la mayoría se forman en las muertes explosivas de estrellas masivas.

Sin embargo, “es posible” que una pequeña parte de ellos se cree en fusiones de estrellas de neutrones, aunque nunca antes se habían tenido evidencias, “lo que hace especial este descubrimiento”.

Si el inesperado brillo vino de un magnetar, dentro de unos años el material eyectado de la explosión producirá luz que aparecerá en longitudes de onda de radio.

Las observaciones de radio de seguimiento pueden finalmente probar si se trata de un magnetar, lo que llevará a una explicación del origen de tales objetos.

EFE

Anuncio
Click para comentar

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Ciencia

Descubren el fósil casi intacto de un cetáceo de 3.000 años cerca de Bangkok

Publicado

el

Por

fósil

Paleontólogos tailandeses trabajan en determinar la edad de un fosil casi intacto de rorcual de Bryde, que podría tener entre 3.000 y 5.000 años, hallado cerca de Bangkok y a unos 12 kilómetros de la actual línea de costa.

El ministro tailandés de Medioambienbe y Recursos Naturales, Varawut Silpa-archa, indicó tras visitar la excavación que espera conocer en diciembre los resultados de las pruebas de carbono para precisar de cuando data el ejemplar.

Aunque los expertos ya apuntaron a medios locales que conforme a análisis previos de conchas encontradas podría rondar entre 3.000 y 5.000 años de antigüedad.

El esqueleto del fósil, de unos doce metros de longitud, conserva en perfectas condiciones la calavera, 19 vértebras, 5 costillas y la aleta izquierda, entre otros huesos.

Los arqueólogos aún trabajan para desenterrar parte del cetáceo encontrado el 6 de noviembre en la provincia de Samut Sakhon, al suroeste de Bangkok, una zona que hace miles de años estuvo cubierta por el agua del mar.

Según el ministro, este descubrimiento ayudará en las investigaciones sobre la evolución del rorcual de Bryde, del cual unos 50 ejemplares del actual mamífero marino habitan a día de hoy las aguas del Golfo de Tailandia.

EFE

Sigue leyendo

Ciencia

Logran la primera prueba experimental de cómo brillan las estrellas masivas

Publicado

el

Por

Las estrellas, en su núcleo, realizan las reacciones que transforman hidrógeno en helio, liberando así la energía que hace que brillen

Las estrellas, en su núcleo, realizan las reacciones que transforman hidrógeno en helio, liberando así la energía que hace que brillen y que, en el caso del Sol, posibilita la vida en la Tierra. Ahora, un equipo de científicos ha logrado la primera prueba experimental de cómo brillan las estrellas masivas.

El hidrógeno es el elemento químico más abundante en el Universo y tanto el Sol como el resto de estrellas nacen cuando comienzan a fusionar hidrógeno para producir helio, que se va concentrando en el centro de las estrellas. Este proceso, que el Sol lleva haciendo 4.500 millones de años, se repite durante buena parte de sus vidas.

Para llevarlo a cabo, en las estrellas se dan dos reacciones nucleares de fusión distintas, una llamada la cadena de protón-protón (pp), que transforma directamente isótopos de hidrógeno en otros de helio, y otra denominada el ciclo CNO, en el que la fusión se cataliza por el carbono, el nitrógeno y el oxígeno.

La primera domina la producción de energía en estrellas de tamaño similar al Sol, produciendo alrededor del 99 %, y ha sido estudiada extensamente. La segunda, el ciclo CNO (carbono, nitrógeno y oxígeno), se cree que tiene un mayor peso en la producción de energía en las estrellas más masivas, a partir de 1.3 veces la masa del Sol.

Sin embargo, el estudio del ciclo CNO ha sido un desafío para la Física, debido a que los neutrinos generados en abundancia en este proceso de fusión son muy difíciles de detectar. Y es que estas partículas solares solo pueden observarse con detectores de alta sensibilidad, que pueden excluir la mayoría del ruido de fondo.

En este trabajo se presenta la primera detección de neutrinos producidos en el Sol por el ciclo CNO o lo que es lo mismo, la primera evidencia experimental directa conocida de este mecanismo.

Los responsables de este descubrimiento son un grupo de investigadores, entre ellos el español David Bravo, reunidos en el proyecto Borexino, un experimento de los Laboratorios Nacionales Gran Sasso del Instituto Nacional de Física Nuclear de Italia (INFN).

Los resultados fueron presentados en junio en el Congreso Neutrino 2020 de Chicago y este miércoles se publican en Nature.

Según sus responsables, de trata de “un hallazgo experimental de valor histórico”, que completa un capítulo de la Física que comenzó en la década de 1930, cuando Hans Bethe y Carl Friedrich von Weizsacker propusieron de forma independiente que la fusión de hidrógeno en las estrellas también podría ser catalizada por los núcleos pesados de CNO.

Sus implicaciones para la comprensión de los mecanismos estelares “son enormes”, aseguran sus responsables en una nota del INFN: dado que el ciclo CNO es predominante en las estrellas más masivas que el Sol, con esta observación Borexino ha alcanzado la evidencia experimental de lo que es de hecho el canal dominante en el Universo para la fusión de hidrógeno.

Borexino ya había estudiado en detalle el principal mecanismo de producción de energía del Sol, la cadena protón-protón, a través de la detección de los flujos de neutrinos principales provenientes de esta cadena de reacciones. Con la medición de estas partículas en el ciclo CNO, se proporciona la primera evidencia experimental de la existencia de este mecanismo adicional de generación de energía en el Universo.

“Ahora tenemos finalmente la primera confirmación innovadora y experimental de cómo brillan las estrellas más masivas que el Sol”, resume Gianpaolo Bellini, del INFN y de la Universidad de Milán.

Se trata, agrega el científico, de la culminación de un esfuerzo de 30 años y de más de 10 años de descubrimientos de Borexino en la física del Sol, los neutrinos y finalmente las estrellas”.

“Borexino ha conseguido ver todos los mecanismos principales a través de las cuales se teorizó que el Sol fusiona dos protones para dar lugar a helio y, por tanto, a energía”, resume a Efe por su parte David Bravo, quien recuerda que gracias al estudio del Sol podemos saber lo que pasa en otras estrellas, pero no solo, también sobre la formación de planetas o sobre los elementos que dan lugar a la vida (oxígeno, carbono).

Además, agrega, una de las grandes preguntas que aún queda en suspenso, pero cuya respuesta se acerca gracias a resultados como estos, es la metalicidad del Sol, es decir, qué elementos más pesados que el helio, como el carbono, nitrógeno y oxígeno, contiene.

“Más o menos este dato se conoce a través de observaciones diferentes, pero no con precisión, lo que tendría implicaciones muy amplias sobre cómo entendemos muchos mecanismos estelares. Los neutrinos son los únicos que pueden dirimir esta cuestión y por eso esta detección es un penúltimo paso crucial”, concluye Bravo.

Sigue leyendo

Ciencia

La herramienta de big data en biología que ayudará a colonizar el espacio

Publicado

el

big data

Hacía décadas que no se veía tanta actividad en la exploración espacial como ahora, con empresas que llevan astronautas a la Estación Espacial Internacional, y misiones a Marte de la NASA y la ESA, pero también de China y Emiratos Árabes, un resurgir que obliga a desarrollar cada vez más experimentos que ayuden a la colonización del espacio.

Con ese objetivo, nació GeneLab, una herramienta interactiva de acceso abierto de la NASA que permite a los científicos de todo el mundo descargar, compartir, buscar y almacenar datos e información sobre las misiones espaciales y los experimentos que se llevan a cabo en el espacio y compararlos con los que se hacen en tierra.

Básicamente, esta ingente base de datos (big data) reúne información sobre investigación biológica y genómica, esenciales para garantizar el éxito de la exploración espacial del futuro: los viajes de larga distancia que obligarán a los astronautas a pasar años en el espacio.

Y es que, la falta de gravedad tendrá efectos sobre el sistema inmunitario y la función de las mitocondrias, además de provocar la pérdida de tejido muscular y óseo, trastornos cardiovasculares, declive cognitivo y el desarrollo de tumores, entre otros problemas.

En estos años, el trabajo internacional con GeneLab liderado por Estados Unidos ha generado un paquete de estudios científicos sobre biología y genómica en el espacio que se publican hoy en varias revistas del grupo Cell, mientras que la contribución europea se detalla, también hoy, en la revista Cell Systems.

Uno de los grupos de trabajo europeos, financiados por la Agencia Espacial Europea (ESA), ha sido coordinado por el español Consejo Superior de Investigaciones Científicas (CSIC) y dirigido por el investigador del Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Raúl Herranz.

“Una necesidad fundamental para futuras misiones y la posible colonización del espacio es encontrar la clave del efecto común que producen los entornos con más radiación y gravedad reducida en los organismos” a nivel mitoconcrial, advierte Herranz.

Pero muchos de estos experimentos de biología molecular se refieren al genoma completo de un ser vivo y a aspectos relacionados como la genómica, proteómica, epigenómica o la transcriptómica de las muestras de experimentos espaciales.

Todo ello, genera un big data biológico que resulta clave tanto para utilizarlo en el espacio y prevenir problemas de salud en los astronautas, como para usarlo en la Tierra en la investigación médica y biológica de patologías especialmente las relacionadas con el envejecimiento y para comparar los experimentos de biología espacial de las últimas dos décadas.

EFE

Sigue leyendo

SIGUENOS EN FACEBOOK

SIGUENOS EN TWITTER

CONTENIDO PATROCINADO

Tendencias